Hybrid Models for Learning to Branch

Prateek Gupta*, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

Huawei London Research Center, Nov. 26th 2021

The Alan Turing Institute

Resources

Paper: https: //arxiv.org/abs/2006.15212

Code: https://github.com/ pg2455/Hybrid-learn2branch

Slides: www.pgupta.info/talks

QR Codes generated via https://www.qr-code-generator.com/

To enable **CPU-based discrete optimization solvers** to **use deep learning models** without sacrificing runtime performance.

To enable **CPU-based discrete optimization solvers** to **use deep learning models** without sacrificing runtime performance.

Problem formulation

Our approach: Hybrid Models

Problem formulation

Discrete Optimization Branch-and-Bound The Branching Problem Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

Problem formulation

Discrete Optimization

Branch-and-Bound The Branching Problem Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

$$\underset{x}{\operatorname{arg\,min}}$$
 $c^{\top}x$

▶ $c \in \mathbb{R}^n$ the objective coefficients

$$\begin{array}{ll} \arg\min_{x} & \mathsf{c}^{\top}\mathsf{x}\\ \text{subject to} & \mathsf{A}\mathsf{x} \leq \mathsf{b}, \end{array}$$

▶ $c \in \mathbb{R}^n$ the objective coefficients

- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- ▶ $\mathbf{b} \in \mathbb{R}^m$ the constraint right-hand-sides

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & c^{\top}x\\ \text{subject to} & Ax \leq b,\\ & I \leq x \leq u, \end{array}$$

- $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathbf{b} \in \mathbb{R}^m$ the constraint right-hand-sides
- ▶ $I, u \in \mathbb{R}^n$ the lower and upper variable bounds

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & \mathsf{c}^\top \mathsf{x} \\ \text{subject to} & \mathsf{A}\mathsf{x} \leq \mathsf{b}, \\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{array}$$

- $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathbf{b} \in \mathbb{R}^m$ the constraint right-hand-sides
- ▶ $I, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $\blacktriangleright \ p \le n \text{ integer variables}$

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & \mathsf{c}^\top \mathsf{x} \\ \text{subject to} & \mathsf{A}\mathsf{x} \leq \mathsf{b}, \\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u}, \\ & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{array}$$

- $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $b \in \mathbb{R}^m$ the constraint right-hand-sides
- ▶ $I, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $\blacktriangleright \ p \le n \text{ integer variables}$

NP-hard problem.

Applications

Combinatorial Auctions

Facility location-Allocation

Maximum Indendent Set

Set Covering

and many more ...

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & c^{\top}x\\ \text{subject to} & Ax \leq b,\\ & I \leq x \leq u,\\ & \hline x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} \end{array}$$

- ▶ $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $b \in \mathbb{R}^m$ the constraint right-hand-sides
- ▶ $I, u \in \mathbb{R}^n$ the lower and upper variable bounds
- $\blacktriangleright \ p \le n \text{ integer variables}$

NP-hard problem.

Image credit: Maxime Gasse

Linear Program (LP)

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & c^{\top}x\\ \text{subject to} & Ax \leq b,\\ & \mathsf{I} \leq x \leq \mathsf{u},\\ & \overline{x \in \mathbb{R}^n} \end{array}$$

- ▶ $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $\mathbf{b} \in \mathbb{R}^m$ the constraint right-hand-sides
- I, $u \in \mathbb{R}^n$ the lower and upper variable bounds

Linear Program (LP)

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & c^{\top}x\\ \text{subject to} & Ax \leq b,\\ & \mathsf{I} \leq x \leq \mathsf{u},\\ & \overline{x \in \mathbb{R}^n} \end{array}$$

- ▶ $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $b \in \mathbb{R}^m$ the constraint right-hand-sides
- I, $u \in \mathbb{R}^n$ the lower and upper variable bounds
- Polynomially solvable

Linear Program (LP)

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & c^{\top}x\\ \text{subject to} & Ax \leq b,\\ & \mathsf{I} \leq x \leq \mathsf{u},\\ & \overline{x \in \mathbb{R}^n} \end{array}$$

- $c \in \mathbb{R}^n$ the objective coefficients
- $A \in \mathbb{R}^{m \times n}$ the constraint coefficient matrix
- $b \in \mathbb{R}^m$ the constraint right-hand-sides
- I, $u \in \mathbb{R}^n$ the lower and upper variable bounds
- Polynomially solvable
- Yields lower bounds to the original MILP

LP Relaxation of a $\ensuremath{\mathsf{MILP}}$

Problem formulation

Discrete Optimization Branch-and-Bound

The Branching Problem Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

Branch-and-Bound (B&B)

B&B (Land et al., 1960) is the widely used to solve MILPs.

It consists of two steps

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B&B)

B&B (Land et al., 1960) is the widely used to solve MILPs.

It consists of two steps

Branching - Select variable to split the problem into two

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

Branch-and-Bound (B&B)

B&B (Land et al., 1960) is the widely used to solve MILPs.

It consists of two steps

- Branching Select variable to split the problem into two
- Bounding Solve the LP relaxation of resulting problem to obtain optimization guarantees on the solution

Each node in branch-and-bound is a new MIP

Image source: https://www.gurobi.com/resource/mip-basics/

LP Relaxation of a $\ensuremath{\mathsf{MILP}}$

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_i^* \notin \mathbb{Z}$

 $x_i \leq \lfloor x_i^\star \rfloor \quad \lor \quad x_i \geq \lceil x_i^\star \rceil.$

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_i^* \notin \mathbb{Z}$ $x_i \leq |x_i^*| \quad \forall \quad x_i \geq \lceil x_i^* \rceil.$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_i^* \notin \mathbb{Z}$ $x_i \leq |x_i^*| \quad \forall \quad x_i \geq \lceil x_i^* \rceil.$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

- \blacktriangleright L = U (optimality certificate)
- $L = \infty$ (infeasibility certificate)
- L U < threshold (early stopping)</p>

Branch: Split the LP recursively over a non-integral variable, i.e. $\exists i \leq p \mid x_i^* \notin \mathbb{Z}$ $x_i \leq |x_i^*| \quad \forall \quad x_i \geq \lceil x_i^* \rceil.$

Lower bound (L): minimal among leaf nodes. Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

- \blacktriangleright L = U (optimality certificate)
- $L = \infty$ (infeasibility certificate)
- L U < threshold (early stopping)</p>

Note: A time limit is used to ensure termination.

Branch-and-bound: a sequential process

Sequential decisions:

- variable selection (branching)
- node selection

. . .

- cutting plane selection
- primal heuristic selection
- simplex initialization

Branch-and-bound: a sequential process

Sequential decisions:

- variable selection (branching)
- node selection

. . .

- cutting plane selection
- primal heuristic selection
- simplex initialization

Problem formulation

Discrete Optimization Branch-and-Bound

The Branching Problem

Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

It is also called as variable selection policy.

Policy Objective: Given a B&B node i.e. MILP, select a variable $i \leq p \mid x_i^* \notin \mathbb{Z}$ so that the final size of the tree is minimum (a proxy for running time).
Strong branching¹: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- select the variable resulting in tightest relaxation
- + small trees
- computationally expensive

¹D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS; J. Linderoth et al. (May 1999). A Computational Study of Search Strategies for Mixed Integer Programming.

Strong branching score for a variable i at a node n

Strong branching score for a variable i at a node n

Let L be the value of LP relaxation of the MILP

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- ▶ Denote L⁺_i as the value of LP relaxation of the MILP after adding x_i ≥ [x^{*}_i] constraint

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L⁺_i as the value of LP relaxation of the MILP after adding x_i ≥ [x^{*}_i] constraint
- Similarly, denote L_i^- for the other half

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L⁺_i as the value of LP relaxation of the MILP after adding x_i ≥ [x^{*}_i] constraint
- Similarly, denote L_i^- for the other half

Strong branching score

$$\operatorname{score}_{SB,i} = \max(L - L_i^+, \epsilon) \times \max(L - L_i^-, \epsilon)$$

Strong branching score for a variable i at a node n

- Let L be the value of LP relaxation of the MILP
- Denote L⁺_i as the value of LP relaxation of the MILP after adding x_i ≥ [x^{*}_i] constraint
- Similarly, denote L_i^- for the other half

Strong branching score

$$\operatorname{score}_{SB,i} = \max(L - L_i^+, \epsilon) \times \max(L - L_i^-, \epsilon)$$

Strong branching decision

$$i_{SB}^{\star} = \arg \max_{i} \operatorname{score}_{SB,i}$$

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- pick the variable resulting in tightest relaxation
- + small trees
- computationally expensive

Pseudo-cost branching (PB): backward looking

- keep track of tightenings in past branchings
- pick the most promising variable
- + very fast, almost no computations
- cold start

Reliability pseudo-cost branching (RPB): best of both worlds

- compute SB scores at the beginning
- gradually switches to pseudo-cost (+ other heuristics)
- + best overall solving time trade-off (on MIPLIB)

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- pick the variable resulting in tightest relaxation
- + small trees
- computationally expensive

Pseudo-cost branching (PB): backward looking

- keep track of tightenings in past branchings
- pick the most promising variable
- $+ \,$ very fast, almost no computations
- cold start

Reliability pseudo-cost branching (RPB): best of both worlds

- compute SB scores at the beginning
- gradually switches to pseudo-cost (+ other heuristics)
- + best overall solving time trade-off (on MIPLIB)

Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)

- solve both LPs for each candidate variable
- pick the variable resulting in tightest relaxation
- + small trees
- computationally expensive

Pseudo-cost branching (PB): backward looking

- keep track of tightenings in past branchings
- pick the most promising variable
- $+ \,$ very fast, almost no computations
- cold start

Reliability pseudo-cost branching (RPB): best of both worlds

- compute SB scores at the beginning
- gradually switches to pseudo-cost (+ other heuristics)
- + best overall solving time trade-off (on MIPLIB)

Outline

Problem formulation

Discrete Optimization Branch-and-Bound The Branching Problem Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

Objective:

Given a distribution of problem sets, find a branching policy that yields a shortest tree on an average. Exploits statistical correlation across problem sets.

Figure: Application specific distribution

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$\begin{split} i^{\star}_{SB} &= \arg\max_{i\in\mathcal{C}} \operatorname{score}_{SB,i} \qquad i^{\star}_{f} = \arg\max_{i\in\mathcal{C}} \operatorname{score}_{f_{\theta},i}, \\ \text{where } s^{i}_{f_{\theta}} \text{ is the score for } i \leq p \text{ variable as estimated by } f_{\theta}. \end{split}$$

w

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$i_{SB}^{\star} = \underset{i \in \mathcal{C}}{\operatorname{arg max score}_{SB,i}}$$
 $i_{f}^{\star} = \underset{i \in \mathcal{C}}{\operatorname{arg max score}_{f_{\theta},i}}$,
here $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ} .

$$heta^{st} = rgmin_{ heta} \mathcal{L}(\mathit{f}_{ heta}(\mathit{MILP}), \mathit{i}^{\star}_{\mathit{SB}})$$

Objective: Given a dataset of MILPs

- learn an inexpensive function f
- that imitates strong branching decisions (computationally expensive)

$$i_{SB}^{\star} = \underset{i \in \mathcal{C}}{\operatorname{arg max score}_{SB,i}}$$
 $i_{f}^{\star} = \underset{i \in \mathcal{C}}{\operatorname{arg max score}_{f_{\theta},i}}$

where $s_{f_{\theta}}^{i}$ is the score for $i \leq p$ variable as estimated by f_{θ} .

$$heta^* = rgmin_{ heta} \mathcal{L}(f_{ heta}(MILP), i^\star_{SB})$$

Well studied problem (not an exhaustive list)

- Khalil et al., 2016 \implies "online" imitation learning
- Balcan et al., 2018 \implies theoretical results
- Gasse et al., 2019 \implies offline imitation learning using GCNN

Learning to branch: SVMs

Khalil et al., 2016 uses Support Vector Machines (SVM) to imitate the strong branching policy *through learning-to-rank framework*

- $\ + \ {\rm adapts}$ to the problem instance instead of the distribution
- $+\,$ computationally inexpensive once the SVM weights are learned
- less representational power as compared to GNNs

Learning to branch: SVMs

Khalil et al., 2016 uses Support Vector Machines (SVM) to imitate the strong branching policy *through learning-to-rank framework*

- $\ + \ {\rm adapts}$ to the problem instance instead of the distribution
- $+\,$ computationally inexpensive once the SVM weights are learned
- less representational power as compared to GNNs

Model inputs

Inputs to the SVM model are hand-designed features: X

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy *through classification framework*

- + superior representation power
- + best overall accuracy
- requires GPUs for best running times

Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the strong branching policy *through classification framework*

- + superior representation power
- + best overall accuracy
- requires GPUs for best running times

Model inputs

Inputs to the GNN is a **bipartite-representation of MILP**: G

Natural representation : variable / constraint bipartite graph

$$\begin{array}{ll} \underset{x}{\operatorname{arg\,min}} & \mathsf{c}^{\top}\mathsf{x}\\ \text{subject to} & \mathsf{A}\mathsf{x} \leq \mathsf{b},\\ & \mathsf{I} \leq \mathsf{x} \leq \mathsf{u},\\ & \mathsf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}. \end{array}$$

Natural representation : variable / constraint bipartite graph

$$\begin{array}{ccc} \underset{x}{\operatorname{arg\,min}} & c^{\top}x & & \overbrace{v_{0}} \\ \text{subject to} & Ax \leq b, & & \overbrace{v_{1}} \\ & I \leq x \leq u, & & \\ & x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}. & & & \overbrace{v_{2}} \end{array}$$

▶ v_i: variable features (type, coef., bounds, LP solution...)

Natural representation : variable / constraint bipartite graph

v_i: variable features (type, coef., bounds, LP solution...)
c_j: constraint features (right-hand-side, LP slack...)

Natural representation : variable / constraint bipartite graph

v_i: variable features (type, coef., bounds, LP solution...)
c_j: constraint features (right-hand-side, LP slack...)
e_{i,j}: non-zero coefficients in A

Outline

Problem formulation

Discrete Optimization Branch-and-Bound The Branching Problem Learning to branch Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

MILP Solvers

MILP solvers do not use GPUs.

Use of GNNs can get infeasible in the following scenarios

- No GPUs: It will be infeasible to incorporate GNNs as a branching policy in any of the available solvers
- Parallel MILP solving: As a single GPU can only fit a limited number of GNNs, when several 100s of MILPs need to be solved in parallel, GNNs can get infeasible

Outline

Problem formulation

Our approach: Hybrid Models Model Architecture Training Protocols

Conclusion

Data Extraction

Figure: Data extraction strategies: bipartite graph representation G at every node (expensive); candidate variable features X at every node (cheap); bipartite graph at the root node and variable features at tree node (hybrid).

Outline

Problem formulation

Our approach: Hybrid Models Model Architecture

Training Protocols

Conclusion

Model Architecture

Model Architecture: CONCAT

Perez et al., 2018 first proposed FiLM for visual question answering task

Model Architecture: FiLM

Perez et al., 2018 first proposed FiLM for visual question answering task

Model Architecture: HyperSVM

Perez et al., 2018 first proposed FiLM for visual question answering task

Model Architecture

Expressivity

Model Architecture

Model Architecture: Performance

End-to-end training

Figure: Test accuracy of the different models, with a simple e2e training protocol.
Outline

Problem formulation

Our approach: Hybrid Models Model Architecture Training Protocols

Conclusion

To enhance the generalization power of the learned models on the bigger instances

Training Protocols: Loss weights

A good decision closer to the root node is more important than the ones far away from it.

Table: Effect of different sample weighting schemes on combinatorial auctions (big) instances, with a simple MLP model. $z \in [0, 1]$ is the ratio of the depth of the node and the maximum depth observed in a tree.

Туре	Weighting scheme	Nodes	Wins
Constant	1	9678	10/60
Exponential decay	$e^{-0.5z}$	9793	10/60
Linear	$(e^{-0.5} - 1) * z + 1$	9789	12/60
Quadratic decay	$(e^{-0.5}-1)*z^2+1$	9561	14/60
Sigmoidal	$(1 + e^{-0.5})/(1 + e^{z-0.5})$	9534	14/60

Training Protocols: Knowledge Distillation

Knowledge distillation (KD):² Use the output of an expert GNN from Gasse et al., 2019 as a target for the model.

KD reweights the samples so that the student doesn't attempt to sharply classify samples that even the teacher didn't succeed with (i.e. the logits have higher entropy for the more difficult samples) Phuong et al., 2019.

	cauctions	facilities	indset	setcover
Pretrained GNN e2e e2e & KD	$\begin{array}{c} 44.12\pm0.09\\ 44.31\pm0.08\\ 44.10\pm0.09\end{array}$	$\begin{array}{c} 65.78 \pm 0.06 \\ 66.33 \pm 0.33 \\ 66.60 \pm 0.21 \end{array}$	$\begin{array}{c} 53.16 \pm 0.51 \\ 53.23 \pm 0.58 \\ 53.08 \pm 0.3 \end{array}$	$\begin{array}{c} 50.00 \pm 0.09 \\ 50.16 \pm 0.05 \\ 50.31 \pm 0.19 \end{array}$

Table: Test accuracy of FiLM, using different training protocols.

 2 G. Hinton et al. (2015). Distilling the knowledge in a neural network.

Training Protocols: Auxiliary Task

Auxiliary Task (AT): No additional data requied. We force the variable representations to be far apart from each other.

- ED : Maximum distance between these representations in euclidean space
- MHE³: Uniform distribution of these representations over a unit hypersphere

Table:	Test	accuracy	of	FiLM,	using	different	training	protocols.
--------	------	----------	----	-------	-------	-----------	----------	------------

	cauctions	facilities	indset	setcover
Pretrained GNN e2e e2e & KD e2e & KD & AT	$\begin{array}{c} 44.12 \pm 0.09 \\ 44.31 \pm 0.08 \\ 44.10 \pm 0.09 \\ \textbf{44.56} \pm \textbf{0.13} \end{array}$	$\begin{array}{c} 65.78 \pm 0.06 \\ 66.33 \pm 0.33 \\ 66.60 \pm 0.21 \\ \textbf{66.85} \pm \textbf{0.28} \end{array}$	$\begin{array}{c} 53.16 \pm 0.51 \\ 53.23 \pm 0.58 \\ 53.08 \pm 0.3 \\ \textbf{53.68} \pm \textbf{0.23} \end{array}$	$\begin{array}{c} 50.00 \pm 0.09 \\ 50.16 \pm 0.05 \\ 50.31 \pm 0.19 \\ \textbf{50.37} \pm \textbf{0.03} \end{array}$

³W. Liu et al. (2018). Learning towards minimum hyperspherical energy.

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours	s) 24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Har	d	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wir	าร	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 /	51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 /	56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 /	54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 /	57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 /	54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 /	57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- /	56	286
				Capacit	ated Facili	ty Locati	ion			

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
_	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
Γ	FSB	42.5	1 / 60) 13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60) 139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1/60) 23	214.0	1 / 60	152	794.8	2 / 54	99
	COMP	30.4	3/60) 120	172.5	4 / 60	347	633.4	6/57	294
	GNN	39.2	0 / 60) 112	209.8	0 / 60	314	748.8	0 / 54	286
	FiLM (ours)	24.7	51 / 60) 109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60) 112	150.1	- / 60	314	628.1	- / 56	286
					~ .					

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0/51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
_	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
	COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
F	iLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0/51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
_	COMP	30.4	3/60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
	FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
_	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0/51	50
I	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
I	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
l	COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0/54	286
	FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

			Easy			Medium			Hard	
	Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
_	FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0 / 51	50
	PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
	RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
	COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6 / 57	294
	GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0/54	286
F	iLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
	GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

					Eas	sy			Medi	um			Har	ď	
	Model	Т	ime		Nin	IS	Nodes	Time	Win	s	Nodes	Time	Wii	ns	Nodes
_	FSB	4	2.5	1	1	60	13	313.3	0 /	59	75	997.2	0 /	51	50
	PB	З	31.4	4	1	60	139	177.7	4 /	60	384	712.6	3 /	56	309
	RPB	3	86.9	1	1	60	23	214.0	1/	60	152	794.8	2 /	54	99
	COMP	3	80.4	3	1	60	120	172.5	4 /	60	347	633.4	6 /	57	294
	GNN	3	89.2	(1	60	112	209.8	0 /	60	314	748.8	0 /	54	286
F	FiLM (ours) 2	24.7	51	1	60	109	136.4	51 /	60	325	531.7	46 /	57	295
_	GNN	2	28.9	-	/	60	112	150.1	- /	60	314	628.1	- /	56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0/59	75	997.2	0/51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1/60	23	214.0	1 / 60	152	794.8	2/54	99
COMP	30.4	3/60	120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0/60	112	209.8	0 / 60	314	748.8	0/54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁴.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy		_	Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1/6	0 13	313.3	0 / 59	75	997.2	0 / 51	50
PB	31.4	4/6	0 139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1/6	0 23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3/6	0 120	172.5	4 / 60	347	633.4	6 / 57	294
GNN	39.2	0/6	0 112	2 <mark>09.8</mark>	0/60	314	748.8	0/54	286
FiLM (ours)	24.7	51/6	0 109	1 <mark>36.4</mark>	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 6	0 112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

Finally, the learned models are used as a branching policy in SCIP solver⁵.

Hybrid models have a better runtime performance on average than other baselines as evaluated on CPU only machines.

		Easy			Medium			Hard	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Nodes
FSB	42.5	1 / 60	13	313.3	0 / 59	75	997.2	0/51	50
PB	31.4	4 / 60	139	177.7	4 / 60	384	712.6	3 / 56	309
RPB	36.9	1 / 60	23	214.0	1 / 60	152	794.8	2 / 54	99
COMP	30.4	3 / 60	120	172.5	4 / 60	347	633.4	6/57	294
GNN	39.2	0 / 60	112	209.8	0 / 60	314	748.8	0 / 54	286
FiLM (ours)	24.7	51 / 60	109	136.4	51 / 60	325	531.7	46 / 57	295
GNN	28.9	- / 60	112	150.1	- / 60	314	628.1	- / 56	286

Capacitated Facility Location

		Small			Medium			Big	
Model	Time	Wins	Nodes	Time	Wins	Nodes	Time	Wins	Node
FSB	42.53	1 / 60	13	313.33	0 / 59	75	997.23	0 / 51	50
PB	31.35	4 / 60	139	177.69	4 / 60	384	712.45	3 / 56	309
RPB	36.86	1 / 60	23	213.99	1 / 60	152	794.80	2 / 54	99
COMP	30.37	3 / 60	120	172.51	4 / 60	347	633.42	6 / 57	294
GNN	39.18	0 / 60	112	209.84	0 / 60	314	748.85	0 / 54	286
FILM (ours)	24.67	51 / 60	109	136.42	51 / 60	325	531.70	46 / 57	295
GNN-GPU	28.91	- / 60	112	150.11	- / 60	314	628.12	- / 56	286
				Capac	itated Facility	Location			
FSB	27.16	0 / 60	17	582.18	0 / 45	116	2700.00	0 / 0	n/a
PB	10.19	0 / 60	286	94.12	0 / 60	2451	2208.57	0 / 23	82 624
RPB	14.05	0 / 60	54	94.65	0 / 60	1129	1887.70	7 / 27	48 395
COMP	9.83	3 / 60	178	89.24	0 / 60	1474	2166.44	0 / 21	52 326
GNN	17.61	0 / 60	136	242.15	0 / 60	1013	2700.17	0/0	n/a
FILM (ours)	8.73	57 / 60	147	63.75	60 / 60	1131	1843.24	20 / 26	37 777
GNN-GPU	8.26	- / 60	136	53.56	- / 60	1013	1535.80	- / 36	31 662
					Set Covering	;			
FSB	6.12	0 / 60	6	132.38	0 / 60	71	2127.35	0 / 28	318
PB	2.76	1 / 60	234	25.83	0 / 60	2765	393.60	0 / 59	13719
RPB	4.01	0 / 60	11	26.36	0 / 60	714	210.95	29 / 60	4701
COMP	2.76	0 / 60	82	29.76	0 / 60	930	494.59	0 / 54	5613
GNN	2.73	1 / 60	71	22.26	0 / 60	688	257.99	6 / 60	3755
FILM (ours)	2.13	58 / 60	73	15.71	60 / 60	686	217.02	25 / 60	4315
GNN-GPU	1.96	- / 60	71	11.70	- / 60	688	121.18	- / 60	3755
				Cor	nbinatorial Au	ctions			
FSB	673.43	0 / 53	47	1689.75	0 / 20	10	2700.00	0 / 0	n/a
PB	172.03	2 / 57	5728	753.95	0 / 45	1570	2685.23	0 / 1	38 215
RPB	59.87	5 / 60	603	173.17	11 / 60	205	1946.51	9 / 21	2461
COMP	82.22	1 / 58	847	383.97	1 / 52	267	2393.75	0/6	5589
GNN*	44.07	15 / 60	331	625.23	1 / 50	599	2330.95	0 / 10	687
FiLM [*] (ours)	52.96	37 / 55	376	131.45	47 / 54	264	1823.29	12 / 15	1201
GNN-GPU*	31.71	- / 60	331	63.96	- / 60	599	1158.59	- / 27	685
				Mavi	mum Indenen	lant Sat			

B&B Performance (Optimality Gap)

Hybrid models also have the least optimality gap at the end of the time limit as compared to other baselines as evaluated on CPU only machines.

Table: Mean optimality gap (lower the better) of commonly unsolved "big" instances (number of such instances in brackets).

	setcover (33)	indset (39)
FSB	0.1709	0.0755
PB RPB COMP GNN FiLM	0.0713 0.0628 0.0740 0.1039 0.0597	0.0298 0.0252 0.0252 0.0341 0.0187

Runtime performance

Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN model requires a GPU for being competitive, while our hybrid model does not. (Measured on a capacitated facility location problem, medium size).

Outline

Problem formulation

Our approach: Hybrid Models

Conclusion

Conclusion

We propose hybrid models as branching policies that can be easily integrated with any discrete optimization solvers without needing any access to GPU machines

Conclusion

- We propose hybrid models as branching policies that can be easily integrated with any discrete optimization solvers without needing any access to GPU machines
- We explored various training protocols to enhance both the Top-1 accuracy as well as the runtime B&B performance of these hybrid models

Conclusion

- We propose hybrid models as branching policies that can be easily integrated with any discrete optimization solvers without needing any access to GPU machines
- We explored various training protocols to enhance both the Top-1 accuracy as well as the runtime B&B performance of these hybrid models
- We recommend training protocol as FiLM (e2e & KD & AT) only when these models have significantly better accuracy than FiLM (e2e & KD).

Open questions

- scaling to the real-world problems
- reinforcement learning: still a lot of challenges
- interpretation: which variables are chosen? Why ?
- learning in collaboration with other heuristics, e.g, cut selection, node selection, etc.
- meta-learning to transfer to unseen instances

Paper: https: //arxiv.org/abs/2006.15212

Code: https://github.com/ pg2455/Hybrid-learn2branch

Slides: www.pgupta.info/talks

Hybrid Models for Learning to Branch

Thank you!

Prateek Gupta*, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

The Alan Turing Institute

